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ABSTRACT

For a communication system using satellites carrying antennas tied to a switching system,
the probability distribution of angles between the pointing directions of the axis of the
operating antenna and of a ground receiving station is found. This study is based on the
condition that the antenna pointing most nearly in the direction of a sensing signal is
switched on. In the determination of the characteristics of this system, geometries of
pointing directions are found, which are optimum or near optimum, for the cases of 4,
6,8,12, 16, 24, 32, 48, and 60 antennas. Consideration is also given to determining
an optimum antenna pattern to be used with any geometry. For any pattern, a conver-
sion from probability distribution of angles to probability distribution of gains is straight-

forward. The results of this study are summarized in a chart.
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PROBABILITY DISTRIBUTION OF ANTENNA GAIN FOR SATELLITE
WITH SWITCHED ANTENNA SYSTEM

I. INTRODUCTION

A communication system is presently being studied that employs a number of active
satellites dispersed in separate near-synchronous orbits about the earth. Each satellite will
have an array of antennas only one of which will radiate at any one time during operation. The
satellite must carry instrumentation to monitor a signal from the earth and switch on the antenna
that points most nearly in the direction of the signal. On the other hand, the need of satellite
stabilization is eliminated. Without describing equipment design, this report discusses arrange-
ments of various numbers of antenna pointing directions and the antenna gains in the direction of
an earth receiving station. The RF power that must be generated in the satellite should be as
low as possible, whereas the power transmitted from a ground station can be sufficiently high so
that the location of the transmitter may be eliminated as a factor.

The direction-sensing system that provides the logic for determining which antenna to switch
on may be designed to monitor the signal from the transmitter, a signal sent from the receiving
station or, if an infrared system is used, the signal arriving apparently from the center of the
earth. This direction will be denoted as OS with the satellite situated at O, as shown in Fig. 1.

The satellite carries N antennas all of which will be assumed to have the same circular
symmetric antenna pattern. The pointing directions of the centers of their patterns will be de-

noted by ()'l‘n (n=1,2,...,N) and that of the antenna in operation by OT.

e —

[3-62-259
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N

ANTENNA

RECEIVER \
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S (sensing direction)

SATELLITE

BEAM OF "ON" ANTENNA

\ T (beam axis)

Fig. 1. Schematic view of communication system showing operation of one
satellite O. The signal sensed propagates along direction OS and the an-
tenna whose pointing direction OT is most nearly in direction OS is switched
on. The receiver is in the direction OR.



Other designations will be

OR (direction of the receiving station),
a (angle between OR and OT),
B (angle between OR and OS),
v (angle between OT and OS).

In normal operation, it can be assumed that of the directions OTn, OT subtends the smallest
angle with OS, that is, the antenna pointing most nearly in the direction of the signal sensed will
be the one in operation. Hence, the region enclosing the satellite can be pictured as divided into
pyramidal segments by planes, each of which bisects the angle between two adjacent directions
OTn and is normal to the plane in which the two O’l‘n lie. Each segment defines the region in
which OS must lie for the corresponding antenna to operate.

It is apparent that for any geometry of the pointing directions OTn, angle y has a maximum
value P! Furthermore, the maximum value of angle « would be g + Vi In mathematical

terms
Pla <a) =1 E a>g + Vin (1a)

or
Pla <a)<1 | a<[3+vm : (1b)

One would want to choose the geometry that gives the lowest values of Vi This allows the an-
tennas to be designed for narrower beamwidths and correspondingly higher gains. The RF power
source requirements would then be lessened.
The concept of the system and its operation has now been made clear. To resolve the value
of the system, the discussion will follow the procedure outlined below:
(a) Development of the general equations to determine the probability

distribution P(a < a), the probability that angle « is less than
various angles a for various values of angle .

(b) Programming the equations for calculation by a computer.

(c) Selection of pointing direction geometries for different numbers
of antennas that will give minimum or near-minimum values of v
The cases that are explored are N = 4, 6, 8, 12, 16, 24, 32, 48,m
and 60 antennas.

(d) Calculation and plot of P(a < a) for these geometries.

(e) Determination of the optimum antenna for these geometries based
on a representative antenna pattern g = 2J,(g, sin a)/sina.

(f) Consideration of the RF circuits supplying the antennas and estima-
tion of the circuit losses.

The results of this discussion are summarized in Figs. 6 to 24, Fig. 27, and Appendix A.

II. DEVELOPMENT OF THE EQUATIONS FOR P(« < a)

Consider an arbitrary pyramidal segment (Fig. 2). Introduce an incremental sheet bound by
two cones, TOS® =y and TOS® =y + dy, and the boundary planes of the segment. The probability
that OS will fall within the strip is

- &
P = ¢ (2)
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Fig. 2. Geometry associated with antenna in operation.
It is characterized by a segment of a sphere whose bound-
ary is made up of planes bisecting the angles between ad-
jacent pointing directions.

where € is the solidangle enclosed and 4r is the solid angle of the whole celestial sphere. (This
is based on the condition that all directions OS are equally probable.) In turn, the solid angle Q
is the product of the angular length ﬂt and angular width dy. Hence,

4

14

2 =
Is 4 ' (3)

Angle ﬂ‘ is measured on the surface of the cone TOS® =y at its apex (as if the cone surface were
slit along a generator line and unrolled before the measurement). This surface is sliced by the
boundary of the pyramidal segment, and ?t is the sum of the angles of the surface sectors inside
the boundary.

For any direction OS, direction OR will fall on the surface of another cone whose axis is
0S, since the angle ROS° =g is invariant. (Each value angle 8 assumes may be viewed as an

independent situation.) The probability that @ < a is
P_=-5 (4)

where ﬂs is the angle of the sector measured on the surface of the cone ROS® =g for which @ < a
and ﬂc is the total angle of the cone surface measured at its apex. (This is based on the condition
that all directions OR, where ROS® =8, are equally probable.)

The probability that direction OS lies within the incremental sheet and o < a is
l’tfsd'y
4rl

(&

P'=P_P_=
s a

If direction OS fell within any other incremental sheet, the probability would be given by the
same formula, the values of ﬂt and ls being different. The probability that @ < a for any direc-

tion OS must then be the sum of the individual probabilities, or

) ltlsd'y

4am!
{

P(a < a) =

The summation over one pyramidal segment is, in the limit, an integration. The sum over all

segments is a sum of the integrals. So



i\{ Etisd'y
P(LY < 8) = L S‘ 4”—[ > (6)
62
n=1

where n denotes the nth segment. The summation can be carried out over all the segments for
the same angle y before integrating. Angle [t would be the only factor that could change from

one segment to another. The formula can then be given finally as
¢ N
1 S >‘ 0
Pla < a) = F (-—[C) L hn dy . (7)

n=1
It remains to find expressions for ’s/l(' and ﬂtn

For IS/IC, Fig. 3(a-f) shows the various possible situations that may exist and the value of
ﬂs/ﬂc which corresponds to each situation. Four of the cases are self evident; the other two,

a—-B<y<a+tpB,a>pBandB —a<y<a+tfp, agpB are derived in Appendix B.

(@ rY2a+B (b) ¥y 2a+8
I, i _
!C zC-
l )
‘~
(C) a-B<y<a+p (d) B-a<y<atp
£ _y CO0sa—cos g cosy L5 _y €OSAa—COS B COSY
I, ~* <O sinB siny T, meos sing siny
() y<a-g (f) y<B-a
&-| f'_s-o
L L

Fig. 3. Various situations that may exist for the relative values
of the angles a, B, and y. The value ls/ﬂc is given in each case.



Fig. 4. A detailed portion of the geometry of Fig.2 for the purpose
of determining lfn'

To derive the equations for ¢ a geometry for one segment is set up as shown in Fig. 4.

tn’
The segment belongs to direction OT, and its boundary planes are determined by adjacent direc-
tions OTi (i=1,2,...,I) with i increasing as one goes counterclockwise around the line OT.
Thus, in Fig. 4, j=i+ 1, orifi=1 j=14. The ith boundary plane bisects the angle between the
lines OT and OTi and intersects the plane containing the lines at right angle along the line OFi'
Furthermore, adjacent boundary planes intersect along lines OGij' The cone defined by TOS® = vy
may intersect the ith boundary plane along lines OHia and OHib' The subscripts a and b will
be used to denote the one or the other side of the line OFi' Let points T, Ti’ Tj' Fi Fj’ Gij'
Hia' and Hib all lie on a plane which is perpendicular to direction OT. In addition, there are the
designations TOF.° =u ., TOG..° =v_.., F.TH. ° = ¢ i PTG =0 ..
i ni i nij i” ia L=y nib
and T.OT.° = 2u_... Also, TF.G..° = /2.
i nij i71ij

J
One starts with the knowledge of the direction cosines of OT (xn, A and zn) and OTi (xni,

i s shown in Fig. 4
nia as own in Fig. 4,

Yni’ and Zni)' Thus,
cos Zuni = XX T YuVni T ZnZni ¢ (8a)
cos Zunij = xnixnj + yniynj + Zniznj > etc. (8b)
The cone TOS® = vy intersects the plane TTiTj along a circle whose circumference is 27 THib'
The part of the circle within the boundary has length
I
s=2rTH, - ), H H, ., (9)
i=1



e
where HiaHib is the length of the arc outside the segment.

ZvrTHi - Z

'he angle [tn is then

I —

H. H

b o ia 'ib
¢ - S B i=1
tn OHib OHib
But
rHib = OHib siny
and
> i
B Hy = THp A oo * Prap
= OHy (@50 + Ppyp) SINY
Hence,
I
ltn = [aw = >—1 (‘pnia N "Onib) sy
i=4

There are several situations that must be considered.

(@) Iy <u,

(b) Ifuni<y<v N

But
TF
and
THib

Hence,

“hib

(c) If y > Vm'j

5 then Pria = Pnib = 0

nij

]

1

-4
= cos

. then ¢

nib
g “Ey
TH

E then wnib = cos :
ib

OT tanu

ni

OT tany

tanu_.
ni

tany

nib ¥ ®nja = ®nib * Onja

Whenever this is the case, the angle ¢ will add with the angle ¢nja

in Eq. (14) and it is unnecessary to determine them separately.

The

value of the sum is found by the same procedure that is given in
B. The correspondences in the two cases are

Appendix

P, ST® = TiTT." = 0

1

and

Then

OS - OT

B — 2u

v > 2u

a—> 2u

ni

’

s

] nib ¥ 9nja

nj d

nij

t o

nib nja

— cos 2u

cos 2u_ .. . cos2u_.
. = nij ni nj
= cos .
sinZ2u_. sin2u_.
ni n

J

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)



The value of angle vnij is derived in Appendix C and is given by

2 2(1 —cosZuni) (1 — cos Zun.) (1 — cos Zuni‘)
tan" v _.. = J J . (22)

ni 1 - COSZZU ; —cos2 2u_. —cosZZu ..+ 2 cos2u_. cos2u_. cos2u
ni nj nij ni nj

nij
In summary, the desired probability distribution is given by substituting the value of ltn’

Eq. (14), into Eq. (7) and is

¢\ N I
af = | (-5 =¥ i
Pla <a) = 3= <“c> Y oler— ) et o) siny dv
n=1 i=1

. N I
- _syIN_ 1 \ .
. S‘ <fc> 5~ ar L L Opia t ogpp)| sinvdy L&)

n=1 i=1

The values of IS/EC are given in Fig. 3, and those of ¢, are given by Eqgs. (15), (19) or (24).
Note that the value of I may change with the value of n. The computation may be simplified if

n, of the segments are alike, another n, are alike, and so on. Then

M
ul
Y, n_ =N (24)
m=1
and
2 M I
s |N 1 )
P(a < a) = g Tz % Yon Y (@a t omp| SinY Ay (25)
m=1 i=1

The values ¢ . are the values of ¢ . for the n__-like segments. Similarly, values u_. and v _ ..
mi ni m mi mij
will be used for the values of u_. and v_.., respectively.

ni nij
The limits of integration need only be over the range of angle y, where the integrandis finite.

The lower limit v, is then dependent on the factor IS/EC and by reference to Fig. 3, its value is
v, =0 if a>g (26a)
and
Y, =B —a if a<gp . (26b)

Ify>a+g, then! /t =0, orify>v_, where v__ is the largest value of v_ .. for all values of
s’ ¢ m m mij

m or i, then = (wmia + @ ) = 27, and the integrand is 0. The upper limit of y is then

: mib
i
yu:a+B if a+[3\<vm (27a)
or
Piy ™ Ty if a+pg> - . (27b)

Since the largest value angle y can have is L the range of values of angle a is 0 toB + Vo

Fora>l3+vm, Pla <a) = 1.



III. PROGRAMMING THE EQUATIONS FOR COMPUTER CALCULATION

The difficulties of programming the equations for P(a < a) occur mainly in the formulation
1
of the sum < (¢
i=1

— + ‘pmib)' A sensible approach is indicated in the following scheme.

Having a value of y, we determine whether it is larger than each of the values of Va2

etc., in turn. In each case where vy is larger, the corresponding value of ? mib +
[Eq.(21)] is found and added. Then we compare the value of y with each of the values

Ym23’ Ym34’
‘pmja

of u , u , u |
mi m2 m3
the value of y is larger than uoa both values Ponin and ¢

etc. If y is smaller, there is no contribution [Eq. (15)]. If, for example,
m3pb May contribute to the sum. If
Y2 V23 the contribution of ? m3a has already been taken up in the first step. Similarly, if
Y 2> Vi34 the same is true for ® m3b Ify<v

[Eq.(19)]. Also, if y <v

tion then is

) ) ’ -1, )
m23’ the contribution of ® m3a 1S COS (tan “mB/t‘m v)

1 1 1 -1 1 I oY =Y . a1
m34’ the contribution of ? m3b is cos “(tan um3/tan v). The net contribu-

_1 tan um3
‘pm3a + Ym3b ~ €m3 ©°% tanvy ' (28)
where € n3 May have the values of 0, 1 or 2. In a program, one can start with the values,
€mi = 2, for all m and i. Then, if it is found that vy > Vmij’ the values of € mi and ch. are each

decreased by 1. This produces the right contribution for the sum as given, for example, by Ilq. (28).
A flow chart for a satisfactory program is given in Appendix D. The data that are read into
the program include the pointing directions OTn needed to define one segment of each different

configuration.

IV. SELECTION OF POINTING DIRECTION GEOMETRIES

As indicated in Sec.I, angle y has a maximum value Vi for any geometry, and the most de-
sirable geometry is the one that gives the smallest value of L permitting the antenna to be de-
signed for minimum beamwidth and consequently maximum gain. However, no method is known
for finding the optimum geometry for the general case of N antennas. The procedures outlined
in this section for various numbers N may not give the optimum geometry, but in each case, it
can be demonstrated that the geometry is sufficiently near optimum that the loss in quality is
small.

For this study, the pointing directions will be represented by points Tn (n=1,2,...,N) on
the surface of a sphere of unit radius, where they are actually the vectors joining the sphere cen-
ter to these points. The sensing direction will be represented by another point S on the sphere
surface which is free to wander anywhere among the points Tn' The nearest of the points to
point S is the one that defines angle y. As point S wanders, it will see locations of maximum
v values, such as point Gij in Fig. 4. Each of these locations is spaced by three equal angles
from the three neighboring points of the set Tn' For if one travels away from this location in
any direction, angle y decreases. The N points may then be joined by lines on the sphere sur-

face to form a polyhedron whose faces are spherical triangles, and the number of vertices is

V=N . (29)



The polyhedron will have F faces, each of which will have associated with it a value of
vf(f = 4,2, v, F); wWhere Vg is the largest value of y that can exist for the three points defining

the triangle. The largest of the values Ve is then V' By Euler's theorem,

F-E+V=2 |, (30)

where E is the number of edges. Each face has three edges but each edge is shared by two

faces. Hence,
s B B
E = > I . (31)

By substituting Eq. (29) and Eq. (31) into Eq. (30), one obtains

F=2N-4 (32)
and

E=3N-6 ) (33)

If all the triangles can be made equilateral and congruent, it can be demonstrated that the
smallest value of Vi possible will result. Although there are onlythree polyhedra where this is
possible (tetrahedron N = 4, octahedron N = 6, and icosahedron N = 12), such a device is useful
for any value of N because it permits one to obtain a hypothetical value of Vs say G, which is
known to be smaller than the best possible value. If we have a geometry that has a value of -
very close to the value of G, then the geometry must be very nearly optimum.

To prove that the hypothetical geometry is better than the optimum, we shall assume that a
better geometry than the hypothetical one exists and we shall show that an impossible situation
follows. For the assumed geometry, all the values of Ve would be less than the value G. It will
be shown below that for any value Vi the triangle on the spherical surface with the largest area
is equilateral. Since each triangle of the hypothetical geometry is also equilateral and Vg <G,
then

4am
B<F
where Af and 4r/F are, respectively, the areas of a face of the assumed geometry and a face of

the hypothetical geometry. Also, it is necessary that

F
L Af:41r
f=1
Hence,
F
\ 4r
= &
Z 7 4T ’
f=id

and since each term of the series is the same, then
4m
P (—) <
F( T ) < 4r

’

which is impossible.



Z

Fig. 5. Geometry showing the spherical triangle formed
v by three adjacent antenna pointing directions OP, OQ,
and OR.

X

Consider one of the spherical triangles, say PQR, in a coordinate system, as shown in
Fig.5. This triangle is oriented so that direction OP is in the X-Z plane and angles POZ° =
QOZ° = ROZ® =vy. Also, let the angles separating the planes containing the Z-axis and points
P, Q and R, be p, g, and r, as shown. Hence,

p+tg+tr=2r , (34)
and the coordinates are

P(siny, 0, cosvy) )

Q(siny cosq, siny sinqg, cosvy) |
and

R(siny cosr, — siny sinr, cosy)

If angles q and r have values where the area of triangle PQR is maximum, then any infinitesi-
mal change in q or r will produce no change in area. That is, if angle q increases by dq, point

Q moves to Q' and the change in area is 0, or

ARQQ' — APQQ' =0 . (35)
Now APQQR' must be proportional to dq to the first order and must be a function of q and y alone.
Hence,

APQQ' = f(q,y) dq . (36)
Similarly,

ARQQ' = f(p,y) (=dp) (37)
where the same function f is used but with p replacing q. Since dq = —dp, one finds that

flq,v) = f(p,y) . (38)

Similarly, a change in area due to an increase in angle r is also 0 and
f(r,y) = f(p,v) . (39)

Certainly, one solution of Egs. (34), (38), and (39) is

p:q:r:%w:120° . (40)

10



If the function f is actually evaluated and Eq. (38) is solved, one gets the result
q=p+nr s n=0,+1,£2,...

However, for values of n other than 0, the area is smaller. Hence, the triangle with the
largest area is equilateral.

For the hypothetical geometry, vy = G, q = 2r/3, and r = 27/3, and the coordinates become

P(sinG, 0, cosG) ,
Q(—% sin G, \[2—3 sin G, cosG) .
and

R(—% sinG, —gsinc}, cosc)

The plane containing the points P, Q, and O has equation

x cosG + y~N3cosG—zsinG=0 , (41)

and its normal is

ﬁz?cosG+?\/§cosG—KsinG . (42)
The spherical angle QPR® is double the angle between N and the Y-axis and is given by

QPR° N - j

CoS ——— = — (43)
IN|

By substituting Eq. (42) into Eq. (43) and solving for G, one obtains

(44)

Since several lines radiate from point P to delineate a corresponding number of triangles all
with angle QPR®, there must be 2r/QPR° lines meeting at each point P. Referring again to the
picture of the polyhedron, we see that there are 21/QPR° edges meeting at each vertex and that

since each edge is shared by 2 vertices, the total number of edges is

N

“ T QPR® #48)
From Egs. (33) and (45), one obtains

Qpre = T 5o, (46)
and from kq. (44)

costécot%Nl\iz {47)

This formula provides a useful method of indicating how good the geometry is that we choose to
investigate, by permitting a comparison of the value of L with that of G. An incidental outcome
of this theory is that the area of one of the spherical triangles can be derived in terms of angle
QPR°® by equating the area to 4r/F and substituting for F [Eq. (32)] and then for N [Eq. (46)].

The result obtained agrees with that educed in spherical trigonometry, as it should.

11



Now we can proceed to choose pointing direction geometries and investigate their character-
istics for the various values of N. The values chosen, mainly for their ease of solution, are
N =4, 6, 8, 12, 16, 24, 32, 48, and 60. In each case, the positions of the points are chosen in
order to have the largest number of triangles equilateral and the values of Ve at or near Yin?
There is no evidence that the choices are the best, but the comparisons of the values L with
G show them to be good. The choices are based largely on the geometries given in the paper of
Schiitte and van der Waerden.* In the case N = 32, two geometries are given. One has slightly
poorer characteristics but its geometry repeats in the 8 octants which may be more convenient

for some applications.

xl Na 3-62-2599

Fig. 6. Geometry showing the chosen pointing
directions for 4 antennas.

N = 4 (Fig. 6)
The 4 points are at the vertices of a tetrahedron.

Geometry symmetries:

All triangles are equilateral and congruent.

Coordinates:
T1 (0, 0, 1.00000)

TZ (0.94281, 0, —0.33333), etc.
v._ =G =70.53"°
m

A plot of P(a < a) for this geometry is shown in Fig. 7.

*K. Schitte and B.L. van der Waerden, "Auf welcher Kugel haben 5, é, 7, 8 oder 9 Punkte mit Mindestabstand
Eins Platz?" Math. Annalen 123, 96 (1951).

12
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a (deg)

B (deg)

40

30+

20

o1 051 510 50 T 90 95 99 999 9999
P(a <a) (percent)

Fig. 7. Probability that receiver is at an angle less than a from the pointing direction
of the antenna in operation for the 4-antenna geometry (Fig.6).
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3-62-2601]

Fig. 8. Geometry showing the chosen pointing
directions for 6 antennas .

N = 6 (Fig. 8)

The 6 points are at the vertices of an octahedron.

Geometry symmetries:

All triangles are equilateral and congruent.

Coordinates:
T1 (0, 0, 1.00000)

T, (1.00000, 0, 0), etc.

5 |

v__ =G = 54.74°.
m

A plot of P(a < a) for this geometry is shown in Fig. 9.

N = 8 (Fig. 10)

4 points are midway between the X-Z and Y-Z planes and lie above the
X-Y plane.

4 points are on the X-Z and Y-Z planes and lie below the X-Y plane.
All points are the same distance from the X-Y plane.

Introduce points U1 on Z-axis, U2 on X-Z plane and U3 on negative
Z-axis.

Condition:
T1U1 = I1UZ = TSUZ = T5U3'

Geometry symmetries:

4 triangles (e.g., '1‘1'1“2'1"3) are right angle, isosceles and
congruent and Ve S Vi
8 triangles (e.g., T,T,Ty) are isosceles and congruent and
V.=V

f m’

14



3-62-2602 |
70 {16
|
12
|
8
60
4
0
501~
[
[
%
40
o >
Ld L3
© ©
) @
30 N=6
|
[
20
10
|
f
[
ol T 0 1 N S Y 9 T P T RS (U (O S K R S N T B J
ol 05 | 5 10 50 90 95 39 999 9999

P(a < a) (percent)

Fig. 9. Probability that receiver is at an angle less than a from the pointing direction
of the antenna in operation for the 6-antenna geometry (Fig. 8).
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Fig. 10. Geometry showing the chosen pointing
directions for 8 antennas.

“[3-62-2604]

60 I~

ol , |

3 / 3
o 7/ 2
© 30 Q
|
N=8
20—
10—
o] L 11l 1 111 { IS N — S V) N N (R 1 |
(o8] 05 1 L33 10 50 90 95 99 999 99.99

P(a<a) (percent)

Fig. 11. Probability that receiver is at an angle less than a from the pointing direction
of the antenna in operation for the 8-antenna geometry (Fig. 10).
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Coordinates:

T, (0.54120, 0.54120, 0.64359)
'1‘5 (0.76537, 0, —0.64359), etc.

UZ (0.98517, 0, 0.17157)

v 49.94°
m

G = 46.52°.
A plot of P(a < a) for this geometry is shown in Fig. 11.

N = 12 (Fig. 12)
The 12 points are at the vertices of an icosahedron.

Geometry symmetries:

All triangles are equilateral and congruent.

Coordinates:

T, (0, 0, 1.00000)
T, (0.89443, 0, 0.44721)
T, (0.27639, 0.85065, 0.44721)

'1‘4 (0.72361, 0.52573, —0.44721), etc.

v =G=37.38"°.
m

A plot of P(a < a) for this geometry is shown in Fig. 13.

N = 16 (Fig. 14)

4 points are on the X-Z and Y-Z planes and lie above the X-Y plane.

4 points are midway between the X-Z and Y-Z planes and lie below
the X-Y plane.

The 8 points are the same distance from the X-Y plane.

4 points are midway between the X-Z and Y-Z planes and lie above
the X-Y plane.

4 points are on the X-Z and Y-Z planes and lie below the X-Y plane.
The 8 points are the same distance from the X-Y plane.
Introduce points U1 on Z-axis, U2 midway between X-Z and Y-Z
planes and U3.

Condition:

T1U1 = TiUZ = T1U3 = T3UZ = I‘3U3 = 'I4U3.

Geometry symmetries:

4 triangles (e.g., TiTZTS) are right angle, isosceles

and congruent and Ve = Ve

8 triangles (e.g., ’1‘1T2T3) are isosceles and congruent and
Ve=V__.

f m

16 triangles (e.g., T1T3T4) are congruent and Ve E Vo

i
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Fig. 12. Geometry showing the chosen pointing
directions for 12 antennas.
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Fig. 13. Probability that receiver is at an angle less than a from the pointing direction
of the antenna in operation for the 12-antenna geometry (Fig. 12).
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Coordinates:
T1 (0.55598, 0, 0.83119)

T4 (0.99524, 0, —0.09749)
T3 (0.70374, 0.70374, 0.09749), etc.
UZ (0.54661, 0.54661, 0.63437)

U, (0.87575, 0.24798, 0.41421)

3
v, = 33.,78°
m
Gi= 32.43°.

A plot of P(a < a) for this geometry is shown in Fig. 15.

N = 24 (Fig. 16)
3 points are in each octant which form an equilateral triangle centered
in the octant.
The geometry is the same for all octants.
Introduce points U1 on Z-axis, U2 at the midpoint of the first octant
and U,.
3
Conditions:
T,T, = ’1213 - ’11'13.
T,U, =T,U,=T,U, = I‘3U2:TU =T,U,=T,U

Geometry symmetries:

12 triangles (e.g., T,T,Tg) are right angle, isosceles and
congruent and Vg = Vo
8 triangles (e.g., '1‘1T2T3) are equilateral and congruent

and v, = v__.
f m

24 triangles (e.g., T1T2T4) are congruent and Mg =W

Coordinates:
T1 (0.26993, 0.37827, 0.88546)
TZ (0.88546, 0.26993, 0.37827), etc.
U2 (0.57735, 0.57735; 0.57735)
U3 (0.64344, 0.10754, 0.75791)
L 27.69°

G = 26.05°,

A plot of P(a < a) for this geometry is shown in Fig. 17.

N = 32, Case 1 (Fig. 18)

8 points are at the midpoints of the octants.
24 points lie on the coordinate planes at equal distances from the axes.
The geometry is the same for all octants.

Introduce points U1 on Z-axis and U2 midway between X-Y and Y-Z
plane.

19
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Fig. 14. Geometry showing the chosen pointing
directions for 16 antennas.
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48
44

40t

a (deg)

24

B (deg)

20

1 ! i 1 o 1 | 11 114 l
[eX] 05 1 5 10 50 90 95 99 999 9999
P (a<a)(percent)

Fig. 15. Probability that receiver is at an angle less than a from the pointing direction
of the antenna in operation for the 16-antenna geometry (Fig. 14).

20



Fig. 16. Geometry showing the chosen pointing
directions for 24 antennas.
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Fig. 17. Probability that receiver is at an angle less than a from the pointing direction
of the antenna in operation for the 24-antenna geometry (Fig. 16).
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Fig. 18. Geometry for one set of pointing directions for 32 antennas.
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Fig. 19. Probability that receiver is at an angle less than a from the pointing direction
of the antenna in operation for the 32-antenna geometry (Fig. 18).
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Condition:
- _m _m U
11U1 liUZ 'I3L2.
Geometry symmetries:
12 triangles (e.g., T,T,Tg) are right angle, isosceles and
congruent and v, = v
f m
24 triangles (e.g., T T3T,) are isosceles and congruent and
Ve =V __.
f m
24 triangles (e.g., T1TZT3) are isosceles and congruent and
VS Vo
f m
Coordinates:

T1 (0.40475, 0, 0.91443)
T3 (0,.57735, '0.57735, 0.57735)
T4 (0.91443, 0, 0.40475), etc.

U2 (0.69318, 0.19747, 0.69318)

v__ = 23.88°
m
G = 22.49°.

A plot of P(a < a) for this geometry is shown in Fig. 19.

N = 32, Case 2 (Fig. 20)

12 points are at the vertices of an icosahedron.

20 points are at the midpoints of the triangles of the icosahedron.

Geometry symmetries:

All triangles are isosceles and congruent.

Fig. 20. Geometry for a second set of pointing directions for 32 antennas.
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Fig. 21. Geometry showing the chosen pointing directions for 48 antennas.
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Fig. 22. Probability that receiver is at an angle less than a from the pointing direction
of the antenna in operation for the 48-antenna geometry (Fig. 21).
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Coordinates:
T1 (0, 0, 1.00000)

T2 (0.89443, 0, 0.44721)
T3 (0.49112, 0.35682, 0.79465)
T4 (0.98225, 0, —0.18759)

T5 (0.79465, 0.57735, 0.18759), etc.
v_ = 22.69°
m
G = 22.49°.

N = 48 (Fig. 21)

6 points are in each octant which form a cluster of 4 equilateral triangles
centered in the octant.

The geometry is the same for all octants.

Introduce points U, on Z-axis, U2 at midpoint of an octant and U3.

1

Conditions:
Fyty=Taly 6= Tgly

I
=
!

113 =TTy =TTy = TyTg = T, Ty = T4T

T1Ui - TZUZ = ’1‘3U2 = I‘5UZ - TZU3 = T7U3 TSU3'

Geometry symmetries:

12 triangles (e.g., T4T,Tq) are right angle, isosceles and

congruent and Vi = V-

32 triangles (e.g., T,T,T3) are equilateral and congruent
and vy = vy
24 triangles (e.g., T2T7T8) are congruent and ve = v ..

24 triangles (e.g., T,T,T;) are congruent and vy < v .

Coordinates:
T1 (0.09252, 0.31372, 0.94500)

T4 (0.94500, 0.09252, 0.31372)
TZ (0.61706, 0.28702, 0.73270)
TS (0.73270, 0.61706, 0.28702), etc.
U2 (0.57735, 0.57735; 0.57735)
U3 (0.60477, —0.03842, 0.79547)
v__=19.09°
G = 18.30°.

A plot of P(a < a) for this geometry is shown in Fig. 22.
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Fig. 23. Geometry showing the chosen pointing directions for 60 antennas.
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Fig. 24. Probability that receiver is at an angle less than a from the pointing direction
of the antenna in operation for the 60-antenna geometry (Fig.23).
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N = 60 (Fig. 23)

36 points lie on the coordinate planes.
24 of the 36 points are the same distance from the axes.
The other 12 are midway between 2 axes.

24 points are midway between two coordinate planes at equal distances
from the centers of the octants.

The geometry is the same for all octants.
Introduce points U1 on X-axis, U2 midway between X-Y and Y-Z planes
and U,,.
3
Condition:

13[71: I3U3:T2U3: r11U3: IZU =1

Geometry symmetries:

12 triangles (e.g., '1‘3’1‘4T13) are right angle, isosceles

and congruent and VeE Vi

24 triangles (e.g., T3T4T“) are isosceles and congruent
and Ve < Voo
m
48 triangles (e.g., T2T3T“) are congruent and Vg = Wy
24 triangles (e.g., TZT10T11) are isosceles and congruent
and Ve = Voo
m
8 triangles (e.g., Ty¢Ty4T,,) are equilateral and congruent
and vy < v .
m
Coordinates:
Ty (0.95660, 0, 0. 29140)
TZ (0.70711, 0, 0.70741)

T, (0.77565, 0.44630, 0.44630), etc.
U, (0.67642, 0.29140, 0.67642)

U3 (0.84544, 0.16667, 0.50740)

Vim, = 16.94°
G = 16.35%,

A plot of P(a < a) for this geometry is shown in Fig. 24.

V. INCLUSION OF ANTENNA PATTERN CHARACTERISTICS

Having determined the probability distribution of angle « for a specific geometry, one will
want to design an antenna whose pattern is most suitable for the case of interest. As an example,
suppose we want to build a satellite with 32 antennas arranged as shown in Fig. 18, which is to
have an RF power source strong enough to allow messages to be received 100 percent of the time
at stations located anywhere where B is 8° or less. Referring to Fig. 19, we see that angle «
will have values up to a = 31.9°. The antenna is designed for maximum gain at this angle, thus
minimizing the power requirements of the RF source. If reception for 80 percent of the time
were allowed, angle a@ would be less than a = 21.6° for 80 percent of the time, and the antennas

could be designed for maximum gain at 21.6° which would be higher than the gain of the first
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antenna. Similarly, smaller values of 8 would permit smaller values of a and correspondingly
higher antenna gains for the same probability.
To illustrate better the application of the antenna pattern, suppose the pattern is given by

2J 1(g0 sin o)

A sin o ' (48)

where .11 is the Bessel function of the first kind, g is the signal amplitude at angle a off the
axis, and g, is the signal amplitude on the axis (@« = 0). This pattern is based on the situation
where a plane wavefront emanates from a circular aperture and it is fairly representative of
RF horns in general. The antenna designer has a choice of the value g, at his disposal. It is
approximately

2rr

g() - A ’ (49)

where r is the aperture radius.

The half-power beamwidth HPBW is found by Eq. (48), where

o = —; HPBW (50)

and

g= (51)

3-62-2618

3-INCH LUNEBURG LENS
H-PLANE CUT
——- E-PLANE CUT

f= 7750 Mcps

ANTENNA GAIN g (db)
T

T

Ll 1 |
-160 -120 -80 -40 o 40 80 120 160
ANGLE a (deg)

Fig. 25. Pattern of a circular pipe of 1-inch aperture butted against a Luneburg lens
of 3-inch diameter taken at a frequency of 7750 Mcps.
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Hence,

g, sin % HPBW = 1.616 (52)
or
HPBW - 2 sin'i(ﬂ) . (53)
go

Now at @ = a, gain g is maximum when g, has a value where J1 is maximum. The values

are, from Eq. (48),

go sina = 1.841 (54)
and

g sina = 1.164 . (55)
An immediate observation is that

£ -0.632~>-3.98db (56)
gO

and the maximum range of gain values is 3.98db for the optimum pattern. [n our example,
where a = 31.9°, g, = 3.486 - 10.85db, and g = 2.204 ~ 6.87 db.

A similar analysis was applied to the other geometries and the results are summarized in
Appendix A. Two values of g, 0° and 8°, were considered. The trends in a change of N or g8
are easily noted and for values not included, the characteristics can be estimated.

It is useful to give an example of the application of an actual pattern to a probability distri-
bution. The pattern shown in Fig. 25 (very nearly the same in the E- or H-plane) is of a circular
pipe of 1- inch aperture butted against a Luneburg lens of 3-inch diameter taken at a frequency
of 7750 Mcps. For this pattern, HPBW = 34° and g~ 5.69 ~ 15.1db, and hence 85 sind HPBW
1.66, which agrees well with the value given by Eq.(52). This pattern, in conjunction with the

geometry of Fig. 18, produces a probability distribution as shown in Fig. 26. These curves were

16~ [i-62-2619
12
LIMITING
B B=o0° VALUES (db)
(P=1)
8.5
sl
)
2 - 5.7
o
=z
a 4t
o
2
or
3.5
-a IR 0 o O I B TR T N B S B | NS T )

o. 05 | 5 10 50 90 95 99995 999
P(g<q')(percent)

Fig. 26. Probability that the antenna gain is less than a value g' in the direction
of the receiver for the geometry of Fig. 18 using the pattern in Fig. 25.
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Switching  Estimated
Elements Loss (db)

RF SOURCE
o ) 0.1
Switching  Estimated N:6
Elements Loss (db) 2 0.3
RF SOURCE S
0.1 0.1
N=4 ’
4 0.6 6 0.45
0.1 0.1
ANTENNAS 4 0.8 ANTENNAS 8 1.05
(a) 4-antenna system. (b) 6-antenna system.
Switching  Estimated Switching  Estimated
Elements Loss (db) RF SOURCE Elements  Loss (dﬂ
RF SOURCE -
0.1 0.1
o 2 0.3 e 3 0.45
0.1 0.1
8 0.6 i 12 0.6
ANTENNAS 10 1.2 ANTENNAS 15 1..35
(c) 8-antenna system. (d) 12-antenna system.
Switching Estimated
RF SOURCE Elements Loss (db)
0.1
N:16
4 0.6
0.1
16 0.6
0.1
ANTENNAS 20 1.5

(e) 1é-antenna system.

Fig. 27(a-i). Switching matrix and estimated insertion loss for various values of N.
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simply obtained by converting the angles a of Fig. 19 to gains by Fig.25. The choice of pattern
for this geometry is not optimum, and where the gains may drop to say 8.5db for g = 0° or
2.1db for g = 8°, the gains would drop at the most to 9.2 and 6.9 db, respectively, if the optimum
patterns were used.

The ideal antérma for this application is one where the gain is constant for angle o less than
a and 0 otherwise (within the restriction of retaining circular symmetry). Then

B 1
ideal = . a a <a (57a)

g

or

€ideal ~ o " @ >a : (57b)

On comparison with the gain given by Eq. (55),

og &
€ideal 972 -
g 0.582

Approximately, cosa/2 = 1 and the ratio is 4.7db. If such a pattern could be created, the RF
power necessary for communication is correspondingly reduced. However, the opportunities
for shaping a more desirable pattern are impeded by the difficulties of maintaining a simple

antenna design.

VI. CONSIDERATION OF THE RF CIRCUITS

To complete this study, some consideration should be given to the switching matrix supply-
ing the RF to the appropriate antenna. The matrix will be assumed to contain switches that are
either SP2T, SP3T or SP4T. The expected switching matrices for the various values of N are
shown in Fig. 27(a-i). If we assume that there is an insertion loss of 0.6 db in a SP4T switch,
0.45db in a SP3T switch, 0.3db in a SP2T switch and 0.1db in each length of transmission line
connecting the switches to each other, to the power source or to the antennas, we can estimate
the total loss of RF through the matrix. The results are given in Appendix A. (The values
of switch insertion losses are based on experimental evidence obtained for switches using PIN
diodes in waveguide packages, where f = 7750 Mcps. Ferrites should show better characteristics
but they are less desirable for satellite applications due to weight and driving power requirements.)

Each SP2T, SP3T or SP4T switch requires 2, 3 or 4 switching elements. For example, for
the matrix of 32 antennas, 42 switching elements are needed. One can appreciate the complexity
of the logic circuits and the problems of generating power to operate switching elements, if the

number of antennas is large.

VII. CONCLUSIONS

The results of this study are well summarized in Appendix A. The choice of the number of
antennas will also depend on factors other than those mentioned in this report. However, it ap-
pears that for the small reduction in RF power requirements, more than 12 or 16 antennas are
not warranted, due to the complexity of the switching circuits. A fair appraisal should also in-
clude a comparison of this type of satellite with one that does not contain switches but is de-
signed to radiate as close to isotropic as possible. In any case, this system is put forth as a

preferable means, for some types of communication, of linking two distant locations on the earth.
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Switching  Estimated

RF SOURCE Elements  Loss (db)

0.1

A 2 0.3
0.1
6 0.45

0.1

24 0.6

LH 0.1
ANTENNAS 32 1.75

(f) 24-antenna system.

Switching  Estimated
Elements  Loss (db)

RF SOURCE
0.1
2 0.3

N=32
0.1
8 0.6
0.1
32 0.6
0.1
ANTENNAS

42 1.9

(g) 32-antenna system.

Fig. 27. Continued.
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RF SOURCE

ANTENNAS

(h) 48-antenna system.

RF SOURCE

3-62-2620(h-i) |

|

ANTENNAS

|

(i) 60-antenna system.

Fig. 27. Continued.
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Switching  Estimated
Elements Loss (db)
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0.45
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Elements Loss (db)

0.1
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15 0.6
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60 0.6
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APPENDIX A

SUMMARY OF EXPECTED CHARACTERISTICS FOR CASES INVESTIGATED

32 32
Number of Antennas N 4 6 8 12 16 24 Case 2 | Case 1 48 60
Number of switching elements 4 8 10 15 20 32 42 42 63 79
Estimated circuit loss (db) 0.8 1.0 1.2 1.3 1.5 1.8 1.9 129 2.0 2.2
B = 0° (angle between receiver and sensing
direction)
Largest possible angle of receiver
from axis of operating antenna
(deg) 70.5 54.7 49.9 37.4 33.8 27.7 22.7 23.9 19.1 16.9
This angle if angles between
adjacent pointing directions
could be made equal (ideal
case) (deg) 70.5 54,7 46.5 37.4 32.1 26.1 22;:5 22.5 18.3 16:3
Maximum antenna gain at this
angle (db) 1.83 3.08 3.65 5.66 6.42 7.98 | 9.60 9.18 11.03 | 12.03
Gain at this angle after
deducting circuit loss (db) 1.0 2.1 2.4 4.4 4.9 6.2 .7 7.3 9.0 2.8
Antenna gain at peak for same
antenna pattern (db) 5.81 7.06 7.63 9.64 10. 40 11.96 | 13.58 13.16 15.01 16.01
Gain at peak after deducting
circuit loss (db) 5.0 6.1 6.4 8.3 8.9 10.2 117 V1.3 13.0 13.8
Half-power beamwidth for
same pattern (deg) M7 1.6 84.4 64.4 58.4 48.2 39.6 41.6 33.4 29.6
p=g°
Largest possible angle of receiver
from axis of operating antenna
(deg) 78.5 62.7 57.9 45.4 41.8 35,7 30.7 31,9 27.1 24.9
Maximum antenna gain at this
angle (db) 1.50 2.35 2.76 4.27 4.85 6.00 | 7.16 6.87 8.15 8.82
Gain at this angle after
deducting circuit loss (db) 0.7 1.3 1.6 3.0 3.3 4.2 5.3 5.0 6.1 6.6
Antenna gain at peak for same
antenna pattern (db) 5.48 6.33 6.74 8.25 8.83 9.98 [ 11.14 10. 85 12.13 12.80
Gain at peak after deducting
circuit loss (db) 4.7 5.3 5.5 6.9 73 8.2 9.2 8.9 10.1 10.6
Half-power beamwidth for
same pattern (deg) 118.7 102.6 96.1 77.3 71.6 61.6 |53.2 85,2 47.1 43.5
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APPENDIX B
DERIVATION OF THE FORMULA FOR f/f , WHERE |a— 4| <y <a+p

Ifa—B<y<a+pBpanda>p, orp—a<vy<a+panda<pB, then there will be two directions
()P1 and ()PZ on the cone ROS° = g where POT*® = a (Fig. B-1). Let points Pi' PZ' S, and T
lie on a plane perpendicular to OS. The ratio lg/lC becomes simply the ratio of the angle sub-

tended by the arc I’1P2 at S to 2w, or

{ 2P, 8T*®
S 1

1 27 : (B-1)

C
Now

L PSP 4B BT
P1ST° = cos = (B-2)
2P,S « ST
1
Also
=2 =2 . ===2 el

1311 =10 1 +OT" — ZOP1 . OT cosa . (B-3)

Hence,
_, P;S° +ST% - OP,* -~ OT® + 20P, - OT cosa
P18T° = cos —— (B-4)
2P15 . ST

But

P1$ = OS tanp | (B-5)

ST = OS tany (B-6)

OP1 = OS secp (B-7)
and

oT = OS secy . (B-8)

&

Fig. B-1. Details of the geometry for the purpose
of determining ls/lc when |a—B| <y<a+p.
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